
CQRS at Enterprise Scale
Graham Brooks
Coding Architect

! @grahamcbrooks

" graham@grahambrooks.com

grahambrooks.com/talks

http://grahambrooks.com

$ Client

% Server

 Store

' Business Logic

ResponseRequest

Simple
 Object
 Access
 Protocol

$ Client

% Server

 Store

' Business Logic

ResponseRequest

$ Client

% Server

 Store

' Business Logic

ResponseRequest
(Web App

SOAP

<definitions name="EndorsementSearch"
 targetNamespace="http://namespaces.snowboard-info.com" xmlns:es="http://www.snowboard-info.com/EndorsementSearch.wsdl"
 xmlns:esxsd="http://schemas.snowboard-info.com/EndorsementSearch.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
>

 <!-- omitted types section with content model schema info -->

 <message name="GetEndorsingBoarderRequest">
 <part name="body" element="esxsd:GetEndorsingBoarder"/>
 </message>

 <message name="GetEndorsingBoarderResponse">
 <part name="body" element="esxsd:GetEndorsingBoarderResponse"/>
 </message>

 <portType name="GetEndorsingBoarderPortType">
 <operation name="GetEndorsingBoarder">
 <input message="es:GetEndorsingBoarderRequest"/>
 <output message="es:GetEndorsingBoarderResponse"/>
 <fault message="es:GetEndorsingBoarderFault"/>
 </operation>
 </portType>

 <binding name="EndorsementSearchSoapBinding"
 type="es:GetEndorsingBoarderPortType">
 <soap:binding style="document"

source w3c.org

http://w3c.org

SOAP

• XML based

• Intolerant to change versioning is particularly difficult

• Middleware not (web) client facing

• Its XML based

REpresentational
 State
 Transfer

$ Client

% Server

 Store

' Business Logic

ResponseRequest
(Web App

SOAP

$ Client

% Server

 Store

' Business Logic

ResponseRequest

GETPOST/PUT/DELETE

REST
• Uniform Interface Client–server

• Stateless

• Cacheable

• Layered system

• Identification of resources

• Manipulation of resources through these representations

• Self-descriptive messages

• Hypermedia as the engine of application state (HATEOAS)

Command
 Query
 Responsibility
 Segregation

 Responsibility
 Segregation

$ Client

% Server

 Store

' Business Logic

ResponseRequest

GETPOST/PUT/DELETE

$ Client

% Server

 Store

' Business Logic

ResponseRequest

Re
sp

on
sib

ilit
y

Se
gr

eg
at

io
n

$ Client

% Server

 Store

' Business
Logic

Command

Commands
• What makes a good command?

• RESTful? - POST/PUT/DELETE

• SOAP - set()

• Something else

• POST /customers/123/addresses
{
 "command": "change-address",
 "reason": "moved",
 "address": {...}
}

$ Client

% Server

 Store

' Business
Logic

Command

$ Client

% Server

 View Store

' View

Query

% Server

 View Store

' View

Query

$ Client

% Server

 Store

' Business
Logic

Command

Re
sp

on
si

bi
lit

y
Se

gr
eg

at
io

n

% Server

 View Store

' View

Query

$ Client

 Store

' Business
Logic

Command

Re
sp

on
si

bi
lit

y
Se

gr
eg

at
io

n

% Server

 Store

' View

Query

$ Client

 Store

' Business
Logic

Command

Re
sp

on
si

bi
lit

y
Se

gr
eg

at
io

n

Domain models and view models stored separately

Different interaction) Different Technologies

% Server

 Store

' View

Query

$ Client

 Store

' Business
Logic

Command

Message Bus

% Server

 Store

' View

Query

$ Client

* Event Store

' Business
Logic

Command

Message Bus

% Server

 Store

' View

Query

$ Client

* Event Store

' Business
Logic

Command

Message Bus

Scaling reflects load - Read/Update ratio 10:1

Technology reflects use
SQL/NoSQL

% Server

 Store

' View

Query

$ Client

* Event Store

' Business
Logic

Command

Message Bus

!!Disconnect!!

Real-time) Synchronous

CQRS is inherently asynchronous

CQRS & the Enterprise

Scale

Query

$ Client

Command

Message Bus



+,



+
+
+

Customer
Cluster 

+,



+
+
+

Account
Cluster

"

"

-

. . .

/

Query

$ Client

Command

Message Bus



+,



+
+
+

Customer
Cluster 

+,



+
+
+

Account
Cluster

Message Bus


+,



+
+
+



+,



+
+
+

Message Bus


+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+



+,



+
+
+ 0

0

0

0

0

0

0 0

Consistency Latency 0+0+0

Resilience
Each Service is independent because it contains all the data needed to complete

or accept a command from the user.

Coupling
Services communicate the results of an action. Services are only coupled by the

data and not for processing.

' Business
Logic

60s Event Sourcing

 Store

1 Command: Change Address

1 Command: New Customer

2 Event: NewCustomerEvent

1 Command: Name Change

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

60s Event Sourcing

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

Customer Orders

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

2 Customer Record V12 Customer Record V22 Customer Record V3

Replay

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

Customer Orders

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

2 Customer Record V12 Customer Record V22 Customer Record V3

Complaints

 Store

Replay - endstate

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

Customer Orders

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

2 Customer Record V12 Customer Record V22 Customer Record V3

Complaints

 Store

2 Complaints Customer V3

Replay

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

Customer Orders

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

2 Customer Record V12 Customer Record V22 Customer Record V3

Complaints

 Store

 Store

Replay

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

Customer Orders

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

2 Customer Record V12 Customer Record V22 Customer Record V3

Complaints

2 Customer Record V12 Customer Record V22 Customer Record V3

Replay - endstate

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

Customer Orders

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

2 Customer Record V12 Customer Record V22 Customer Record V3

Complaints

 Store

2 Complaints Customer V3

Replay Challenges
• Scale: How do you replay billions of

events

• Snapshotting can help but event
volume >= aggregate count

• Event processing must be
idempotent.

• Compound problem with fan in -
service requires events from many
others.

 Store

2 Event: NewCustomerEvent

2 Event: AddressChangedEvent

2 Event: NameChangedEvent

Highlights
• Captures Intent - Customer Moved - change address

• Encourages DDD and Event Sourcing

• Handles complexity well

• Distinct Command and View model(s)

• Becoming Popular

• Extremely scaleable!

• Very decoupled

Lowlights

Complex

Deceptively complex

Relatively new

Immature framework support

Not good for simple domains

Axon

http://www.axonframework.org

Thank You
Graham Brooks

! @grahamcbrooks

" graham@grahambrooks.com

grahambrooks.com/talks

http://grahambrooks.com

